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Abstract—Bitcoin has become the most popular cryptocur-
rency based on a peer-to-peer network. In Aug. 2017, Bitcoin was
split into the original Bitcoin (BTC) and Bitcoin Cash (BCH).
Since then, miners have had a choice between BTC and BCH
mining because they have compatible proof-of-work algorithms.
Therefore, they can freely choose which coin to mine for higher
profit, where the profitability depends on both the coin price
and mining difficulty. Some miners can immediately switch the
coin to mine only when mining difficulty changes because the
difficulty changes are more predictable than that for the coin
price, and we call this behavior fickle mining.

In this paper, we study the effects of fickle mining by modeling
a game between two coins. To do this, we consider both fickle
miners and some factions (e.g., BITMAIN for BCH mining) that
stick to mining one coin to maintain that chain. In this model, we
show that fickle mining leads to a Nash equilibrium in which only
a faction sticking to its coin mining remains as a loyal miner to
the less valued coin (e.g., BCH), where loyal miners refer to those
who conduct mining even after coin mining difficulty increases.
This situation would cause severe centralization, weakening the
security of the coin system.

To determine which equilibrium the competing coin systems
(e.g., BTC vs. BCH) are moving toward, we traced the historical
changes of mining power for BTC and BCH and found that BCH
often lacked loyal miners until Nov. 13, 2017, when the difficulty
adjustment algorithm of BCH mining was changed. However, the
change in difficulty adjustment algorithm of BCH mining led to
a state close to the stable coexistence of BTC and BCH. We
also demonstrate that the lack of BCH loyal miners may still be
reached when a fraction of miners automatically and repeatedly
switches to the most profitable coin to mine (i.e., automatic
mining). According to our analysis, as of Dec. 2018, loyal miners
to BCH would leave if more than about 5% of the total mining
capacity for BTC and BCH has engaged in the automatic mining.
In addition, we analyze the recent “hash war” between Bitcoin
ABC and SV, which confirms our theoretical analysis. Finally,
we note that our results can be applied to any competing
cryptocurrency systems in which the same hardware (e.g., ASICs
or GPUs) can be used for mining. Therefore, our study brings
new and important angles in competitive coin markets: a coin
can intentionally weaken the security and decentralization level
of the other rival coin when mining hardware is shared between
them, allowing for automatic mining.

I. INTRODUCTION

Bitcoin [1] is the most popular cryptocurrency based on a

distributed and public digital ledger called blockchain. Nodes

in the Bitcoin network store the blockchain, where transactions

are recorded in a unit of a block, and the blockchain is

extended by generating new blocks. The process of generating

new blocks is referred to as mining, and nodes conducting

mining activities are referred to as miners. To successfully

mine, miners should find a solution called the proof-of-work

(PoW) [2]. In Bitcoin, miners are required to solve a crypto-

graphic puzzle finding a hash value to satisfy specific condi-

tions such as a certain number of leading zeroes. To solve a

puzzle, miners spend their computational power, and the miner

who finds the solution obtains 12.5 coins and the transaction

fees in the new block as a reward. In addition, Bitcoin has an

average block interval of 10 minutes by adjusting the mining

difficulty (i.e., the difficulty of the puzzles).

As Bitcoin has gained popularity, the transaction scalability

issue has risen, and several solutions have been proposed to

address the issue. However, there were also several conflicts

over these solutions. As a result, in Aug. 2017, the Bitcoin

system was split into the original Bitcoin (BTC) and Bitcoin

Cash (BCH) [3], [4]. The key idea of BCH is to increase

a maximum block size to process more transactions than

BTC. However, even with different block size limits, they

have compatible proof-of-work mechanisms with each other.

Therefore, miners can freely alternate between BTC and BCH

mining to boost their profits [5]. The mining profitability

changes when the mining difficulty and coin price change,

but some miners may be concerned only with the change in

former because it is relatively easier to predict the former

than the latter. More precisely, rational miners can decide

which cryptocurrency is better to mine depending on the coin

mining difficulty — BCH mining would be conducted by the

miner only if the BCH mining difficulty is low compared to

the BTC mining difficulty; otherwise, the miner does BTC

mining rather than BCH mining. We call this miner’s behavior

“fickle mining” in this paper. Note that the fickle miner may

change the coin to mine at a specific time period whenever

the coin mining difficulty changes. Thus, fickle mining leads

to instability of mining power, which may eventually cause

unstable coin prices [5].

Game model and analysis. In this study, we aim to analyze

the economics of fickle mining rigorously, which can later be

extended to show how one coin can lead to a lack of loyal

miners for other less valued coins. Here, a loyal miner repre-

sents one who conducts mining the less valued coin even after

the coin mining difficulty increases. To study the economics
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of fickle mining, we propose a game theoretical framework

of players who can conduct fickle mining between two coins

(e.g., BTC and BCH). Moreover, our game model reflects

coin factions that stick to mining their own coins, as they are

interested in only the maintenance of their systems rather than

the payoffs. Then we analyze Nash equilibria and dynamics in

the game; two types of equilibria exist: the stable coexistence

of two coins and the lack of loyal miners for the less valued

coin. More specifically, in the latter case, only some factions

(e.g., BITMAIN for BCH mining) remain as loyal miners for

the less valued coin, and this fact can eventually make the

coin system severely centralized, weakening its security. We

describe the game model in Section IV and analyze the game

in Section V.

Data analysis for BTC vs. BCH. Next, as a case study,

we analyzed the mining power changes in BTC and BCH

to see if our theoretical analysis matches with actual mining

power changes. In this paper, we refer to the Bitcoin system

as a coin system consisting of BTC and BCH. We examine

the mining power history in the Bitcoin system from the

release date of BCH until Dec. 2018 to 1) analyze which

equilibrium its state has been moving to and 2) evaluate

our theoretical analysis empirically. Our analysis results show

that until the BCH mining difficulty adjustment algorithm

changed (on Nov. 13, 2017), the Bitcoin state reached a lack

of loyal miners for BCH. Therefore, BCH periodically became

severely centralized before the update of the BCH protocol.

For example, we observe a period when only five miners exist,

of which two miners possess about 70 % power. However,

since Nov. 13, 2017, the Bitcoin state has been close to

coexistence because the change in the BCH mining difficulty

adjustment algorithm with a shorter difficulty adjustment time

interval (i.e., every block) has affected the game as an external

factor.

Nevertheless, we explain that the state would still get closer

to a lack of BCH loyal miners if automatic mining, in which

miners automatically choose the most profitable coin to mine,

is popularly used. Note that the main difference between fickle

mining and automatic mining is that fickle miners immediately

change their coin only when the mining difficulty changes

while automatic miners can immediately change their coin

when not only the mining difficulty but also the coin price

changes. As a result, at the time of writing (Dec. 2018), if

5% of the total mining power of the Bitcoin system involves

automatic mining, the current loyal miners for BCH would

leave, weakening its security.

Data analysis for Bitcoin ABC vs. SV. As another case

study in our game model, we also analyze the changes in

the hash rate distributions of Bitcoin ABC and Bitcoin SV,

before and after the recent “hash war” between those two

coins. The analysis results of these case studies are presented

in Section VI and VII.

Generalization. Moreover, we remark that our analysis can

be generalized to any circumstance wherein two coins have

compatible PoW mechanisms with each other. We believe

that the generalized results bring new important angles in

competitive coin markets; a coin can attempt to steal loyal

miners from other rivalry coins that have compatible PoW

mechanisms. In Section VIII, a risk of automatic mining and

the way to intentionally reduce the number of loyal miners

for other coins are described. Then, in Section IX, we discuss

countermeasures and environmental factors that may make the

actual coin states deviate from our game analysis.

In summary, our main contributions are as follows:

1) To analyze the economics of fickle mining, we first

model a game between two coins, considering some coin

factions that stick to mining their own coin.

2) We analyze Nash equilibria and dynamics in the game

and find two types of equilibria: 1) stable coexistence of

two coins and 2) a lack of loyal miners to the less valued

coin. Then, we apply this game to the Bitcoin system.

3) To determine if real-world miners’ behaviors follow our

model, we investigate the mining power history in the

Bitcoin system. Then we show that the state reached the

lack of BCH loyal miners until Nov. 13, 2017, and we

confirm that this fact periodically led the BCH system to

be centralized and insecure. Moreover, for generalization,

we also analyze the recent “hash war” situation between

Bitcoin ABC and Bitcoin SV according to our game

model.

4) We introduce a risk of automatic mining and predict that

the current BCH loyal miners would leave when 5%

of the total mining power in BTC and BCH involves

automatic mining.

5) Finally, our game is generalized to any mining-

compatible coins (e.g. Ethereum vs. Ethereum Classic).

Therefore, our study brings a threat that one coin can

intentionally steal loyal miners from other less valued

coin.

II. PRELIMINARY

A. Cryptocurrency

Many cryptocurrencies such as Bitcoin, Ethereum, and

Litecoin adopt the PoW mechanism as a consensus algorithm.

In the PoW mechanism, when a node solves a cryptographic

puzzle, the node can generate and propagate a valid block.

Then other nodes append the generated block to the existing

blockchain. The puzzle is to find an inverse image of a hash

function satisfying the certain condition, and thus the node

should spend computational power to solve the cryptographic

puzzle. The process of generating a block is called mining, and

nodes participating in mining are called miners. In systems,

the mining difficulty is adjusted to maintain the average time

of generating one block. In particular, Bitcoin mining difficulty

is adjusted to keep the average period of generating one block

at 10 minutes. In addition, to incentivize mining, whenever a

miner finds a valid block, the miner earns the reward for one

block in compensation for the computational power spent. For

example, currently, miners earn the block reward of 12.5 coins

in the Bitcoin system when they find one block.
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Many people have become involved in mining because

of the incentive for mining, and specialized hardware for

efficient mining such as application-specific integrated circuits

(ASICs) has appeared. Based on the above reasons, the vast

computational power is used for mining, and mining difficulty

has increased significantly. Therefore, it should take a solo

miner, who mines alone, a significantly long time to find a

valid block, and this causes solo miners to wait for a long time

to earn block rewards. To reduce not only node costs and but

also the variance of their rewards, mining pools where miners

gather together for mining have been organized. Most pools

are composed of workers and a manager. The manager gives

puzzles to workers, and they solve the puzzles. If a worker

solves a given puzzle, the block reward is distributed to the

workers in the pool.

In the past years, there have been many attacks on and

problems with cryptocurrency systems, and these attacks or

problems have even caused cryptocurrency systems to split.

For example, because Bitcoin has become a popular cryptocur-

rency, the system needs to provide high transaction throughput.

To address the scalability issue, several solutions such as

Segregated Witness [6] and unlimited block size have been

proposed. Because of the debate on the proposed solutions,

Bitcoin was eventually split into BTC and BCH in early Aug.

2017. Even though BCH chose to increase the block size limit

in order to allow more transactions per block, the mining

protocol of BCH was designed to be compatible with that

of BTC. Therefore, miners can conduct both BTC and BCH

mining with one hardware device.

B. Fickle mining

Before Nov. 13, 2017, BCH adjusted the mining difficulty

every 2016 block to ensure that the average time period for

generating a block is 10 minutes, like in the case of BTC. In

doing so, if the time required for generating past 2016 blocks

is longer than two weeks, the mining difficulty decreases,

and miners can generate subsequent blocks more easily. In

addition, BCH added a new difficulty adjustment algorithm

called emergency difficulty adjustment (EDA) [7] to decrease

the mining difficulty without waiting for 2016 blocks to be

generated when it is significantly difficult to find a valid block.

Because BTC and BCH have a PoW mechanism compatible

with each other, miners can freely switch between them de-

pending on the mining difficulty and the coin price. However,

because the change in coin price is hard to predict, some min-

ers immediately change their coin only when mining difficulty

changes, where we call this behavior fickle mining. Concretely,

the fickle miners first conduct BTC mining, observing the

changes in the mining difficulties of BTC and BCH. Then,

if the BCH mining difficulty is low, they immediately shift

to BCH mining. When the BCH mining difficulty increases

again thanks to its difficulty adjustment algorithm, fickle

miners immediately shift to BTC mining. Fickle mining can

boost profits of miners; however, this behavior might cause

instability of both BTC and BCH.

This mining behavior was easily observed in Bitcoin when

we monitored the mining power in pools. We collected mining

power history data over the course of a week from two

popular pools: ViaBTC [8] and BTC.com [9]. These two pools

support both BTC and BCH mining; miners in the pools can

choose either BTC or BCH mining by just clicking one button.

Figure 1 represents the mining power data of ViaBTC and

BTC.com for a week. In the figure, the grey regions show

movements of mining power from BTC to BCH mining.

Figure 1. Mining power history of ViaBTC and BTC.com (Sep. 29, 2017 ∼
Oct. 6, 2017). The grey regions represent movements of mining power from
BTC to BCH.

Figure 2. Mining power history of ViaBTC (Dec. 5, 2017 ∼ Dec. 8, 2017).
Grey regions represent movements of mining power from BTC to BCH. Note
that we only displayed the mining power history of ViaBTC because BTC.com
did not evidently execute fickle mining for this period.

As fickle mining causes a sudden increase in mining power

as shown in the grey zones of Figure 1, many blocks were

generated quite quickly in the BCH system. For example, in

the BCH system, 2016 blocks were generated within only

three days in each grey zone. This caused the blockchain

of BCH to be thousands of blocks ahead of BTC, and the

halving time of the block reward in BCH was brought forward.

To address this issue, BCH performed another hard fork on

Nov. 13, 2017 [10]. Currently, BCH adjusts the difficulty for

each block based on the previous 144 blocks as a moving

window [11]. To determine if it is possible that miners conduct

fickle mining even after the hard fork of Nov. 13, 2017, we

investigated the BCH mining power data of ViaBTC for four

days (Dec. 5, 2017 ∼ Dec. 8, 2017). Figure 2 represents the

BCH mining power data of ViaBTC during this time period;

as is evident from the figure, some miners still conduct fickle

mining. Because the BCH mining difficulty is more quickly

adjusted than before the hard fork of BCH, fickle miners
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should switch their mining power more quickly than before

the hard fork. Indeed, fickle mining can occur in any mining

difficulty adjustment algorithm.

III. RELATED WORK

In this section, we review previous studies related to mining

in PoW systems. Kroll et al. considered the Bitcoin mining

process as a game among multiple players [12] and showed

that a miner possessing 51% mining power can be motivated to

disrupt the Bitcoin system. Several works [13], [14] modeled

and analyzed a game between two pools that can launch

denial of service attacks against each other. Eyal and Sirer

introduced the selfish mining strategy, where a malicious miner

successfully mines blocks but does not immediately broadcast

the blocks; instead, the attacker temporarily withholds the

block [15]. Many researchers have intensively studied ways

to optimize and extend selfish mining [16], [17], [18], [19].

Bonneau introduced bribery attacks as a way for an attacker to

increase her mining power [20]. Lewenberg et al. considered

a mechanism of sharing rewards among pool miners as a

cooperative game [21]. In 2015, Eyal modeled a game between

two pools that execute block withholding (BWH) attacks [22].

As a concurrent work, Luu et al. [23] modeled a power

splitting game to find an optimized strategy for a BWH

attacker. Kwon et al. [24] proposed a new attack called a

fork after withholding (FAW) attack against pools [24]. Also,

several works [25], [26] analyzed a transaction-fee regime in

PoW systems, where miners receive incentives for mining as

transaction fees. Moreover, because many cryptocurrencies are

competing with each other, there can be another incentive to

execute 51% attacks. Considering this fact, Bonneau revisited

the 51% attack with some basic analysis [27].

Recently, Ma et al. [28] considered a mining game of

multiple miners and concluded that openness of the Bitcoin

system causes the need for vast mining power. Another

study [29] examined the relation between the Bitcoin/USD

exchange rate and Bitcoin mining power. They first proposed

an industry equilibrium model to forecast the mining power

depending on the Bitcoin/USD exchange rate. Then, they

showed that the real mining power data and simulated mining

power according to their model are similar. Our study focuses

on the relation between two coins that have compatible PoW

mechanisms with each other and the miners’ behavior between

two coins. Furthermore, our model can be used to forecast

the ratio of mining power between two coins. To the best of

our knowledge, this is the first to study the effects of fickle

mining.

IV. MODEL

In this section, we formally model a game to represent fickle

mining between two coins.

A. Notation and assumptions

We consider two coins, coinA and coinB, which have

compatible PoW mechanisms with each other. In this case, a

miner with a hardware device can alternately conduct mining

of coinA and coinB; that is, he can conduct fickle mining

between them. Meanwhile, a coinB-faction can stick to coinB-

mining rather than fickle mining or coinA-mining to maintain

its own coin, and the set of coinB-factions sticking to coinB-

mining is denoted by Ωstick. For example, in the case where

BCH is coinB, BITMAIN [30], one of the main supporters

of BCH, may belong to Ωstick. We aim to formalize a game

considering the fickle mining and Ωstick.

The proposed game consists of many players (i.e., min-

ers), where the set of all players is denoted by Ω. Player

i ∈ Ω chooses one of three strategies, si ∈ {F ,A,B}:

Fickle mining (F), coinA-only mining (A), and coinB-only

mining (B). The payoff function of player i is denoted by

Ui : {F ,A,B}n → R, which we will formally define later

as well as fickle mining. We also define three sets MF

= {i ∈ Ω |si = F}, MA = {i ∈ Ω |si = A}, and

MB = {i ∈ Ω |si = B}, indicating a set of players who

conduct fickle mining, coinA-only mining, and coinB-only

mining, respectively. Note that Ωstick is a subset of MB

because players in Ωstick always choose strategy B. The sum

of mining powers in coinA and coinB is regarded as 1; mining

power of a coin is expressed as a ratio to the total mining

power. The mining power possessed by player i is denoted

by ci, and the total computational power possessed by Ωstick

is denoted by cstick. We also define cmax as the maximum

of {ci | i ∈ Ω\Ωstick}. Moreover, because our game analysis

result would depend on the computational power possessed by

players, we use the notation G(c, cstick) to refer to the game,

where c indicates a vector of computational power possessed

by players except for Ωstick (i.e., c = (ci)i∈Ω\Ωstick
). Lastly,

we denote the total mining power of MF , MA, and MB

as rF (i.e.,
∑

i∈MF
ci), rA (i.e.,

∑

i∈MA
ci), and rB (i.e.,

∑

i∈MB
ci), respectively. Observe that rA = 1− rF − rB and

cstick ≤ rB. Namely, (rF , rB) represents the full status of

mining powers where rB is not less than cstick.

For the analysis of the game, we assume the following:

Assumption 1. A miner conducts either only coinA or coinB-

mining (not both) at each time instance; for example, an ASIC

miner cannot execute both BTC and BCH mining simultane-

ously. However, their choices can be time-varying; that is,

miners can change their coin to mine.

Assumption 2. The price of 1 coinB is equal to that of k

coinA. We assume that 0 < k ≤ 1 without loss of generality.

In addition, rewards for mining a block in both coins are 1

coinA and 1 coinB, respectively.

Assumption 3. In both coinA and coinB systems, mining

difficulties are adjusted to maintain the average period of

generating a block as the same specific time period, which we

denote by 1 Pag time and regard as a time unit; for example, 1

Pag = 10 minutes in the Bitcoin system. Furthermore, we con-

sider a generalized model in which mining difficulties of coinA

and coinB are adjusted in proportion to the mining power

for the previous time window, and we consider a normalized

difficulty. Thus, if x mining power has been engaged in coin

mining, the mining difficulty would be x. More precisely, in
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Figure 3. Changes in the mining power of coinA and coinB, and mining
difficulty of coinB.

our model, the coin mining difficulty decreases and increases

again, considering the generation time of a specific number

of blocks since the last update of coin mining difficulty. In

particular, for the mining difficulty of coinB, we denote the

number of considered blocks when the coinB-mining difficulty

decreases and increases as Nde and Nin, respectively.1 Note

that Nde and Nin cannot be zero. In the case of BTC and

Litecoin, Nde and Nin are 2016.

As described previously, a fickle miner may change the

preferred coin when the coin mining difficulty changes. Here

we define fickle mining formally.

Definition IV.1 (Fickle mining). Let DA and DB denote the

coinA and coinB-mining difficulties, respectively. If DB <

min{rF + rB, k · DA} or DB ≤ rB when DA or DB is

updated, fickle miners (MF ) decide to conduct coinB-mining

until DA or DB is adjusted again. Otherwise, they conduct

coinA-mining.

We also emphasize that if rF is 0, no miner engages in fickle

mining, and mining powers of coinA and coinB are stably

maintained. On the other hand, if rB is cstick, only coinB-

factions Ωstick would conduct coinB-mining after an increase

in the mining difficulty of coinB. In other words, in this case,

only the factions remain as loyal miners for coinB. Therefore,

if the number of such factions (|Ωstick|) is small, the state

would be a lack of loyal miners. Note that loyal miners refer

to players who continue to conduct coinB-mining even after

an increase in coinB-mining. In particular, if all coinB-factions

stop coinB-mining for higher payoff (i.e., |Ωstick| = 0), rB is

0, and no player conducts coinB-mining after an increase in

the mining difficulty of coinB. Note that the coinB-mining

difficulty cannot decrease in this case because Nde cannot

be zero. Therefore, the case rB = 0 indicates the complete

downfall of coinB while only coinA survives.

Parameters used in this paper are summarized in Table I.

The last parameter in the table will be introduced later.

Illustration of fickle mining. Figure 3 illustrates a stream

of mining power in coinA and coinB, as well as the mining

1In Section VI, we will show that our results can be applied to the coin
system regardless of the mining difficulty adjustment algorithm of coinB.

Table I
LIST OF PARAMETERS.

Ωstick
The set of coinB-factions sticking to coinB

mining to maintain their own coin

Ω The set of all players

si Player i’s strategy

Ui Player i’s payoff

F , A, B Fickle, coinA-only, coinB-only mining

MF , MA, MB The set of players with F , A, B
ci Computational power of player i

cstick Computational power possessed by Ωstick

cmax The maximum of {ci | i ∈ Ω\Ωstick}

c
The vector of computational power
possessed by players in Ω\Ωstick

G(c, cstick)
The game of players and Ωstick with

computational power c and cstick

rF , rA, rB
The total computational power
fraction of MF , MA, MB

k The relative price of coinB to coinA

Pag
The time unit representing the average

period of generating one block

Nde, Nin
The number of considered past blocks when the
mining difficulty of coinB decreases or increases

DA, DB The mining difficulty of coinA, coinB

E(c, cstick) The set of all Nash equilibrium in G(c, cstick)

difficulty of coinB over time, caused by the strategies of

players.

- Time t0 : At the beginning, 1 − rB and rB mining powers

are used for coinA and coinB-mining, respectively.

- Time t1 : The mining difficulty of coinB decreases because

it is relatively difficult to find PoWs with rB mining power.

At the moment, MF shifts from coinA to coinB, and each of

1 − rF − rB and rF + rB mining powers is used for coinA

and coinB-mining, respectively.

- Time t2 : Because the mining difficulty of coinB is again

adjusted (increases) after Nin blocks are found in the coinB

system since the last adjustment of the mining difficulty of

coinB, the mining difficulty of coinB would increase after
NinrB
rF+rB

Pag time since it takes rB
rF+rB

Pag to find one valid

block on average. Then, MF shifts again from coinB to coinA

and conducts coinA-mining until the mining difficulty of coinB

decreases.

- Time t3 : Until when the mining difficulty of coinB decreases

after Nde blocks are found in the coinB system, MF would

conduct coinA-mining (for
Nde(rF+rB)

rB
Pag time).

- This process is continually repeated.

B. Payoff function

Next, we describe payoff functions for our game model. All

payoffs are expressed as a unit of coinA and are calculated as

a profit density, which is defined as an average earned reward

for 1 Pag time divided by the player’s mining power. In other

words, if player i earns a reward R for 1 Pag time on average,

the payoff would be R
ci
. Player i’s payoff function Ui(si, s−i)
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is expressed as follows:

Ui(si, s−i) =











UF (rF , rB) if si = F
UA(rF , rB) if si = A
UB(rF , rB) if si = B

(1)

where s−i indicates other players’ strategies. Here, it suffices

to define UF , UA, UB in the range 0 < rF ≤ 1, 0 < rA ≤ 1,

and 0 < rB ≤ 1, respectively; for example, UF would be

defined when si = F (i.e, a fickle miner exists, and 0 < rF ).

First, we define the payoff UF for a player in MF . As

shown in Figure 3, MF conducts coinB-mining for NinrB
rF+rB

Pag

time. Therefore, a player in MF earns the profit k·ci
rB

per 1 Pag

time on average for NinrB
rF+rB

Pag time. After that, MF conducts

coinA-mining for
Nde(rF+rB)

rB
Pag time during which a player

in MF earns the following profit per 1 Pag time on average:

APF := ci

NinrB
rF+rB

+
Nde(rF+rB)

rB

(1−rF−rB)
NinrB
rF+rB

+(1−rB)
Nde(rF+rB)

rB

. (2)

The above formulation is due to the fact that mining powers

1−rF −rB and 1−rB engage in coinA-mining for NinrB
rF+rB

Pag

and
Nde(rF+rB)

rB
Pag times, respectively, and thus, the second

factor in the right-hand side of (2) represents an inverse

number of the mining difficulty of coinA. Consequently, the

payoff of a player in MF can be expressed as

UF (rF , rB) =
(

k·ci
rB

· NinrB
rF+rB

+ APF × Nde(rF+rB)
rB

)

× Z,

where

Z =
1

ci

(

NinrB
rF+rB

+ Nde(rF+rB)
rB

) .

Next, we provide payoffs UA and UB as follows:

UA(rF , rB) =
APF

ci
,

UB(rF , rB) =

(

kNin

rF + rB
+

kNde

rB

)

× ci · Z,

where we observe that a player in MB earns the profit k·ci
rB

per 1 Pag for NinrB
rF+rB

Pag time and profit k·ci
rF+rB

per 1 Pag for
Nde(rF+rB)

rB
Pag time, on average.

V. GAME ANALYSIS

In this section, we analyze Nash equilibria and dynamics in

game G(c, cstick).
A. Equilibrium in game G(c, cstick)
Characterization of equilibria. Before finding Nash equilib-

ria of G(c, cstick), we define a pure Nash equilibrium.

Definition V.1 (Pure Nash equilibrium). A strategy vector s =
(s1, s2, · · · sn) is a Nash equilibrium if

Ui(s) = max
s′
i
∈{F,A,B}

Ui(s
′
i, s−i), for all i.

At an equilibrium, all rational players would not change their

strategy, that is, rF and rB are not updated. We map a strategy

vector s = (s1, s2, · · · sn) to state (rF , rB) and denote by

E(c, cstick) the set of all Nash equilibria in G(c, cstick). We

first determine the dynamics of player i with small ci through

Lemma V.1 to establish the characterization of E(c, cstick).
Lemma V.1. There is ε > 0 such that, any player i possessing

ci < ε does not change its strategy at state (rF , rB) if and

only if

(rF , rB) =

{

(fε(cstick), cstick) ifcstick > 0,

(k2 +

√
Nde

2k2+4NdeNin(k·ci−c2
i
)

2Nde
≤ rF ≤ 1, 0) otherwise,

where fε is a decreasing function of which input is cstick and

output ranges between 0 and 1 − cstick. Parameters k,Nde,

and Nin are defined in Assumption 2 and 3.

Note that fε(cstick) is 1 − cstick for a small value of cstick
while fε(cstick) is 0 for a large value of cstick. The above

lemma implies that, considering miners with small computa-

tional power, if a Nash equilibrium exists, only Ωstick would

remain as loyal miners to coinB in the equilibrium. This is

because (rF , rB) would continually change when rB is greater

than cstick. From Lemma V.1, we can characterize the set

E(c, cstick) as stated in Theorem V.2. We present the proof of

Lemma V.1 and Theorem V.2 in Appendix A.

Theorem V.2. There is ε > 0 such that, when cmax < ε, the

set E(c, cstick) is as follows.

E(c, cstick) =











{(rF , rB) : X ≤ rF ≤ 1, rB = 0} ifcstick = 0,

{(1− cstick, cstick)} else ifcstick < x,

{(0, cstick)} else ifcstick > y,

where

X = max
i∈Ω\Ωstick







k

2
+

√

Nde
2k2 + 4NdeNin(k · ci − c2i )

2Nde







,

x and y (> x) range between 0 and 1.

As described above, Theorem V.2 shows that, in a game

where players except for Ωstick possess small computational

power, there exist only Nash equilibria where the coinB-

factions sticking to coinB-mining are loyal miners for coinB.

In the case where cstick is small, we can certainly see that

the overall health of the coinB system would be weakened in

terms of scalability, decentralization, and security, which will

be discussed in more detail in Section VII-A. Indeed, even

if cstick is large, the case where rB is equal to cstick would

make the coinB system significantly centralized because only

a few players possessing large power are loyal miners to coinB

(this example is presented in Section VII-B). In particular, if

Ωstick is empty, no miner exists in the coinB system in all

Nash equilibria. Remark that this case indicates the complete

downfall of coinB . As a result, Theorem V.2 implies that fickle

mining can be dangerous.

When players possess infinitesimal mining power. Under

the game G(c, cstick), it is not easy to analyze movement of

state (rF , rB) (this movement will be used for data analysis in

Section VII) due to a large degree of freedom in c. Thus, we
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further assume that players except for Ωstick (i.e., Ω\Ωstick)

possess infinitesimal computational power (i.e., ‖c‖2 ≈ 0).

We show that this assumption is reasonable by analyzing the

real-world dataset in the Bitcoin system (see Section VI). We

again study the equilibria of G(c, cstick) in this case.

Theorem V.3. When players except for Ωstick possess in-

finitesimal mining power, the set E(c, cstick) is as follows.

E(c, cstick) =






















































{(

0, k
k+1

)}

∪ {(rF , rB) : k ≤ rF ≤ 1, rB = 0}
if cstick = 0 (Case 1),

{(

0, k
k+1

)}

∪ {(1− cstick, cstick)}
else if cstick ≤ α (Case 2),

{(

0, k
k+1

)}

∪ {(β, cstick)}
else if α < cstick ≤ k

k+1 (Case 3),

{(0, cstick)} otherwise (Case 4)

(3)

Here, α and β are defined in Section V-B.

We present the proof of Theorem V.3 in Appendix B. Compar-

ing with Theorem V.2, the state (0, k
k+1 ) also becomes another

Nash equilibrium when the computational power possessed by

players (except for Ωstick) is infinitesimal. Note that this state

indicates the stable coexistence of coinA and coinB. Indeed,

when ‖c‖2 is closer to 0, the difference among payoffs of

players in MF , MA, and MB would also be closer to 0 at

the state (0, k
k+1 ). Therefore, under the assumption that players

possess infinitesimal power, payoffs of players in MF , MA,

and MB are the same at the state (0, k
k+1 ) while the mining

difficulties of coinA and coinB are maintained as 1
k+1 and k

k+1 ,

respectively. Meanwhile, at the remaining equilibria except

for the state (0, k
k+1 ), only the coinB-factions Ωstick conduct

coinB-mining after the coinB-mining difficulty increases. In

particular, if no coinB-faction sticking to coinB-mining exists,

loyal mining power to coinB is 0 in the Nash equilibria.

Note that, in this case, MF and MA would continuously

conduct coinA-mining, because the mining difficulty of coinB

has not decreased after the previous increase in difficulty.

These players would not also change their strategy because

the mining difficulty of coinB increases to a significantly high

value due to the heavy occurrence of fickle mining.

Example. Considering the case cstick = 0, we give an

example where (rF = 0.2, rB = 0), k = 0.3, and the initial

mining difficulty of coinB is 0.4. The state (0.2, 0) is not a

Nash equilibrium according to Theorem V.3. Because fickle

miners continuously conduct the coinA-mining, the mining

difficulty of coinA is maintained as 1, and players in MF and

MA earn the payoff of 1. If a player moves into MB, the

player would earn 0.3
0.4 for a while in the beginning. However,

because the mining difficulty of coinB decreases after MB

finds several blocks, the player who moves to MB would

eventually earn 0.3
0.2 consistently. Note that the time duration in

which the mining difficulty of coinB is close to 0 is negligible

compared to the time duration in which the mining difficulty of

Figure 4. Horizontal and vertical axes give the values of rF and rB ,
respectively, and (rF , rB)-coordinates of vertices in zones are marked. At the
vertex of Zone1 and Zone3, α is a solution of equation Ninr

3

B
+NderB(1+

k) − kNde = 0 for rB . All points in Zone1, Zone2, and Zone3 move in
directions (−,−), (−,+), and (+,−), respectively.

Figure 5. Yellow points and line represent equilibria for each case.

coinB is 0.2. Therefore, the payoff of MB is 0.3
0.2 , and rational

players tend to move to MB due to the higher payoff. This

means that the state (0.2, 0) is not a Nash equilibrium.

B. Dynamics in game G(c, cstick)
In this section, we analyze dynamics in the game

G(c, cstick) and study how a state can reach an equilibrium.

Best response dynamics. In game G(c, cstick), point (rF , rB)
reaches either of the two types of Nash equilibria: the stable

coexistence of two coins and the lack of loyal miners to coinB .

Figure 4 represents dynamics in game G(c, cstick), where

horizontal and vertical axes are rF and rB values, respectively.

A line, boundary1,3, represents

rB

(1− rF − rB)Ninr
2

B
+ (1− rB)Nde(rF + rB)2

=
k

Ninr
2

B
+Nde(rF + rB)2

.

(4)

On the line, the payoffs of MF (i.e., UF (rF , rB)) and MA

(i.e., UA(rF , rB)) are the same. In addition, the line does not

intersect with the line (0 ≤ rF ≤ 1, rB = 0) and has an

intersection (1 − α, α) with the line rF + rB = 1 for 0 ≤
rF ≤ 1, where α is a solution of equation Ninr

3
B+NderB(1+
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k)−kNde = 0 for rB. The equation Ninr
3
B +NderB(1+k)−

kNde = 0 has only one solution α, and it is between 0 and
k

1+k
. Another line, boundary2,3, represents

(rF + rB)

(1− rF − rB)Ninr
2

B
+ (1− rB)Nde(rF + rB)2

=
k

Ninr
2

B
+Nde(rF + rB)2

,

(5)

and the payoffs of MF (i.e., UF ) and MB (i.e., UB) are the

same on the line. The line does not intersect with the line

rF + rB = 1 for 0 ≤ rF ≤ 1 and has an intersection (k, 0)
with the line (0 ≤ rF ≤ 1, rB = 0). Moreover, it is most

profitable among the three strategies to continually conduct

coinA-mining (A) in a zone above boundary1,3. We let this

zone be Zone1. In the zone below boundary2,3, it is most

profitable to continually conduct coinB-mining (B), and the

zone is denoted as Zone2. In the zone between boundary1,3
and boundary2,3, fickle mining (F) is the most profitable,

and this zone is denoted as Zone3. Note that the range of

zones changes if the coin price changes because boundaries

are functions of k.

The moving direction of point (rF , rB) is expressed as a red

arrow in Figure 4. For ease of reading, we express directions

in which values rF and rB increase (+) or decrease (−) as

(±,±). For example, (+,+) indicates the direction in which

both values, rF and rB, increase. In Zone1, A is the most

profitable strategy, and thus every point in Zone1 moves in the

direction (−,−). In Zone2, because B is the most profitable

strategy, every point moves in the direction (−,+). Finally,

in Zone3, as F is the most profitable strategy, every point

in Zone3 moves in the direction (+,−). Figure 4 shows the

directions in the three zones (Zone1, Zone2, and Zone3).

2D-Illustration of movement towards equilibria. To deter-

mine which equilibrium can be reached within each zone, we

represent all Nash equilibria in game G(c, cstick) depending

on a value of cstick as yellow points and line in Figure 5.

In the figure, the red dash lines represent rB = cstick
for each case. As described in Section V-A, there are two

types of equilibrium points: 1) a lack of loyal miners and

2) stable coexistence of two coins. The equilibrium point

representing a lack of loyal miners would be located on a

red dash line rB = cstick, and we can see that all cases

have this equilibrium. For Cases 1, 2, and 3, the second type

of equilibrium (i.e., (0, k
k+1 )) representing stable coexistence

of two coins is also found. A point (rF , rB) moves in the

direction depending on its zone. In the meantime, if the point

meets the line rB = cstick, then the point moves toward

an equilibrium located on the line rB = cstick as shown in

Figure 5. In particular, the value of rF in the equilibrium on

the red dash line representing Case 3 is denoted by β, where

the equilibrium is the intersection point between boundary1,3
and the red dash line. Note, a point in Zone2 would not meet

a red dash line because the point in Zone2 moves in the

direction (−,+) and can always be above the red dash line.

Therefore, such points in Zone2 are likely to reach the stable

coexistence of coinA and coinB. However, some points (near

to boundary2,3) in Zone2 can also move into Zone3 when

more miners of MA than that of MF revise their strategies,

and then it is possible to reach the equilibrium, representing

a lack of loyal miners to coinB.

VI. APPLICATION TO BITCOIN SYSTEM

In this section, we apply our game model to Bitcoin as a

case study. Specifically, we consider game G(c, cstick) when

players possess sufficiently small mining power. To see if this

assumption is reasonable, we investigate the mining power

distribution in the Bitcoin system, referring to the power dis-

tribution provided by Slush [31]. The distribution is depicted

in Figure 6 where the x-axis represents the range of the relative

computational power ci and the y-axis represents the number

of miners possessing computational power in the correspond-

ing range. The figure shows that 1) most miners possess

sufficiently small mining power, and 2) even the maximum

computational power is less than 10−2. Note that BITMAIN’s

ci is about 3 · 10−2 as of Dec. 2018. Moreover, even though

mining pools currently possess large computational power, the

miners in pools can individually decide which coin to mine.

We also recognize the distribution of computational power is

significantly biased toward a few miners, as shown in Figure 6.

However, this fact does not imply that ‖c‖2 is large. Referring

to the data provided by Slush, ‖c‖2 is only about 0.05, where

this value is equivalent to that for the case where all miners

possess 2.5 × 10−3 computational power.2 Therefore, most

miners (and most mining power) would follow dynamics of

game G(c, cstick). As a result, we can apply game G(c, cstick)
to the practical systems.

Figure 6. The computational power distribution in Slush.

Now, we describe how game G(c, cstick) is applied to the

Bitcoin system. As described in Section II, Bitcoin was split

into BTC and BCH in Aug. 2017. Thus, we can map BTC

and BCH to coinA and coinB, respectively. For the mining

difficulty adjustment algorithm of BCH, we should consider

two types of BCH mining difficulty adjustment algorithms:

those that BCH have before and after Nov. 13, 2017. This is

because the mining difficulty adjustment algorithm of BCH

changed through a hard fork of BCH (on Nov. 13, 2017).

2We calculated this assuming that other pools have the computational power
distribution similar to Slush.
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Before Nov. 13, 2017. First, we consider the mining difficulty

adjustment algorithm of BCH before Nov. 13, 2017. In this

algorithm, not only the mining difficulty is adjusted for every

2016 block, but also EDA can occur as described in Section II.

Note that EDA occurs if the mining is significantly difficult

in comparison with the current mining power, i.e., EDA is

used only for decreasing the BCH mining difficulty. Therefore,

the value of Nin is 2016 because the BCH mining difficulty

can increase after 2016 blocks are found. Meanwhile, when

the BCH mining difficulty decreases, the value of Nde varies

depending on rF and rB, ranging between 6 and 2016. Thus,

we can consider the expected number of blocks found until

the mining difficulty decreases (i.e, the mean of Nde denoted

by E[Nde]) instead of Nde, and E[Nde] as a function of rF
and rB would continuously vary from 6 to 2016. If rF is 0,

E[Nde] is 2016 because EDA does not occur, and if rB is 0,

E[Nde] is 6.

As a result, the Bitcoin system before Nov. 13, 2017 can

be G(c, cstick) where E[Nde] substitutes for Nde. This game

G(c, cstick) has also Nash equilibria and dynamics as shown

in Figure 4 because E[Nde] is a continuous function of rF
and rB.

After Nov. 13, 2017. Next, we consider the Bitcoin system

after Nov. 13, 2017. In this case, the BCH mining difficulty

adjustment algorithm is different from that assumed in our

game because the mining difficulty is adjusted for every block

by considering the generation time of the past 144 blocks as a

moving time window. Despite that, game G(c, cstick) can be

applied to this system. Indeed, in general, our results for game

G(c, cstick) would appear in the Bitcoin system regardless of

the BCH mining difficulty adjustment algorithm, shown below.

Theorem VI.1. Consider the game G(c, cstick) when ‖c‖2 ≈
0. Then when the mining difficulty of coinB is adjusted every

block or in a short time period, the set E(c, cstick) is (3)

presented in Theorem V.3. In addition, G(c, cstick) under this

mining difficulty adjustment algorithm of coinB has dynamics

such as in Figure 4.

Because the current BCH mining difficulty is adjusted every

block, Theorem VI.1 implies that results for game G(c, cstick)
is also applied to the current Bitcoin system even though

the BCH mining difficulty adjustment algorithm changed. The

proof of Theorem VI.1 is presented in Appendix C.

VII. DATA ANALYSIS

A. BTC vs. BCH

We analyze the mining power data in the Bitcoin system

to identify to which equilibrium the state has been moving.

Moreover, through this data analysis, we can find out empir-

ically how much our theoretical model agrees with practical

results. For data analysis of the Bitcoin system, we collected

the mining power data of BTC and BCH from the release date

of BCH (Aug. 1, 2017) until the time of writing (Dec. 10,

2018) from CoinWarz [32]. Figure 7a represents the mining

power history of BCH, where the mining power is expressed

as a fraction of the total power in BTC and BCH, i.e.,

BCH mining power

BTC mining power + BCH mining power
.

In addition, we represent the data history of a ratio between

difficulties of BCH and BTC (i.e., DB

DA
) and a relative price

of BCH to that for BTC (i.e., k) in Figure 7b and 7c,

respectively. The price of BCH is depicted as a yellow line in

Figure 7c (see the left y-axis). Moreover, Figure 7c represents

the relative BCH mining profitability (kDA

DB
− 1) to the BTC

mining profitability as a purple line, and the black dashed

line represents kDA

DB
− 1 = 0 (see the right y-axis for the two

lines). For this profitability, to increase reliability of data, we

collected the daily BCH profitability from CoinDance [33],

and thus a purple point is a data captured every day. Note

that DB

DA
is less than k in the case where the purple line is

above the black dashed line. Figure 7d simultaneously shows

all data histories (except for the BCH mining profitability)

presented in Figure 7a∼7c. In Figure 7, the data from Dec.

2017 to Nov. 2018 are omitted because they are similar to the

data for Dec. 2018. Figure 8a∼8i correspond to parts (1)∼(9)

of Figure 7, respectively, where the area of three zones has

changed because the relative price k of BCH to that for BTC

has fluctuated quite frequently.

As another case study, we examine the mining power data

of Bitcoin ABC and Bitcoin SV from Nov. 1, 2018 to Dec.

20, 2018 to analyze a special situation where cstick suddenly

increases due to the “hash war” caused by a hard fork in the

BCH system. We describe this in Section VII-B.

Methodology. We first describe how to determine rF and rB
of each state. According to the definition of fickle mining

(Definition IV.1), fickle miners would conduct BCH mining

from when DB

DA
changes to a value less than k to when DB

DA

changes to a value greater than k. This is because DB is

always less than rF + rB and greater than rB (see Figure 7d).

Therefore, Figure 7a represents the value of rF+rB during the

period. We indicate the fickle mining periods in gray before

the hard fork of BCH (Nov. 13, 2017) in Figure 7. Figure 7d

shows that DB

DA
changes to a value less than and greater than k

at the start and end of these periods, respectively. As a result,

in Figure 7a, we can find out the value of rF +rB for the gray

colored periods and the value of rB for non-colored periods.

Here, we can see that the mining power of BCH has fluctuated

considerably when the ratio of the BCH mining difficulty to

the BTC mining difficulty (DB

DA
) changes to a value less than

k. Moreover, when the coin mining difficulties do not change

while BCH mining is more profitable than BTC mining, large

peaks (i.e., a sudden increase) do not appear. This fact is

confirmed, referring to the purple line in non-colored zones

(e.g., part (3) in Figure 7c). As a result, we can consider that

those fluctuations occur due to fickle miners between BTC and

BCH.

If a miner switches the coin to mine without changes in the

coin mining difficulty, this implies that the miner’s strategy

changes (e.g., from A to B). From the method described above,

9



(a)

(b)

(c)

(d)

Figure 7. The data for the Bitcoin system from early Aug. 2017 to Dec. 2018 is represented. Figure 7a, 7b, and 7c represent (a) relative mining power of
BCH to the total mining power, (b) the ratio between mining difficulties of BCH and BTC, (c) the ratio between prices of BCH and BTC, and BCH mining
profitability. Figure 7d shows the data for mining power, price, and mining difficulty of BCH. In the gray zones, fickle miners conduct BCH mining. The data
from Dec. 2017 to Nov. 2018 are omitted because they are similar to the data for Dec. 2018. Each point represents a data captured every hour.

(a) Figure 7-(1) (b) Figure 7-(2) (c) Figure 7-(3)

(d) Figure 7-(4) (e) Figure 7-(5) (f) Figure 7-(6)

(g) Figure 7-(7) (h) Figure 7-(8) (i) Figure 7-(9)

Figure 8. Points and movements of Figure 7. Figure 8a ∼ 8i correspond to parts (1)∼(9) in Figure 7. Red arrows represent movement in agreement with
our model, whereas black arrows represent movement deviating from our model. Each upper right square presents enlarged points and directions.
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we can determine the mining power rF used for fickle mining

and the mining power rB used for BCH-only mining. The

points and directions are marked roughly in Figure 8. The red

arrow represents movement in agreement with our analysis,

whereas the black arrow represents movement deviating from

our analysis.

Next, we explain Figure 8 by matching it with each part of

Figure 7.

The beginning of the game. In Figure 7-(1), the status point

is initially in Zone1, and then it moves to Zone2 as shown

in Figure 8a, as the BCH mining power decreases.

Towards the lack of BCH loyal miners. In Figure 7a-(2),

two peaks occur when the BCH mining difficulty decreases

to values less than k, and these peaks appear in the gray

colored periods. Therefore, we can know that these peaks

occur due to fickle miners. The first peak indicates that more

and more miners started fickle mining (i.e., increase in rF ).

This is because the upflow of the first peak is less steep than

that for other peaks, and the downflow of the first peak is

steeper than the upflow of the first peak, indicating that rF
increases from near 0 up to near 0.4. Furthermore, one can see

that rB increased at the beginning of Figure 7a-(2). Remark

that Figure 7a shows the value of rB in a non-colored zone.

In addition, the BCH mining power in the valley between

two peaks of Figure 7a-(2) is greater than the mining power

at the end of Figure 7a-(1). This fact shows again that rB
increased at the beginning of Figure 7a-(2). After that, because

the end of Figure 7a-(2) is less than the valley between the

two peaks of Figure 7a-(2), we can know that rB decreased

while rF increased in Figure 7a-(2). Figure 8b represents these

movements described above.

In the beginning of Figure 7a-(3), rB slightly increases,

and it does not correspond with our model; we regard this

as a momentary phenomenon because of a decrease in the

BCH mining difficulty. Figure 7b shows that the BCH mining

difficulty decreased at the beginning of the part (3). However,

even though the BCH mining difficulty decreased, peaks due to

fickle mining do not appear because the relative BCH mining

difficulty did not decrease to a value less than k as shown in

Figure 7d. As a result, as can be seen in Figure 8c, the point

moves alternatively between Zone1 and Zone3. One can see

that rF decreased compared with the mining power in the

peaks of Figure 7a-(4) and the peaks in Figure 7a-(2); this

might be because the moving direction in Zone1 is (−,−).

Next, the peaks in the period P presented in Figure 7a-

(4) appeared due to fickle miners because the BTC mining

difficulty increased. We can check that DB

DA
in the period P

decreased to a value less than k through Figure 7d. Note that

the fact that the BTC mining difficulty increased makes the

value of DB

DA
decrease. Indeed, the two peaks of the period

P show that rF decreases and then increases because rF +
rB is represented in the period P of Figure 7a. This may be

explained according to our model as follows: the state was near

to the boundary between Zone1 and Zone3 at the beginning of

Figure 7-(4), and then the state entered Zone3 while moving

in the direction (−,−) (the moving direction in Zone1) as in

Figure 8d. Then, the state in Zone3 moved in the direction

(+,−) in agreement with our game, and one can see that the

third peak (i.e., the beginning of the second gray colored zone

in Figure 7a-(4)) is higher than the second peak. After that,

rF decreases (see the second gray colored zone in Figure 7a-

(4)), showing a deviation from our model, which is indicated

by the black arrow in Figure 8d. Indeed, considering this case

as well as Figure 7-(3), we observe such noises in the case

where DB

DA
changes to a value close to k.

Next, as shown in Figure 8e, the point in Zone3 moves

in the direction (+,−) again because peaks in Figure 7a-(5)

are higher than that for Figure 7a-(4). Moreover, in Figure 7c-

(4)∼(6), k is roughly decreasing and even drops to about 0.055

in a few cases. In the meantime, the point passes boundary1,3.

Because the state entered Zone1, rF starts to decrease,

moving in the direction (−,−) (as shown in Figure 8f).

Therefore, the first peak in Figure 7a-(6) is smaller than the

last peak in Figure 7a-(5). Then, because the second peak is

higher than the first peak in Figure 7a-(6), one can see that the

point moved in the direction (+,−) in Zone3 in agreement

with our model, which is, in turn, depicted in Figure 8f.

As can be seen in Figure 8g, rB first increases in Figure 7a-

(7), and the point enters Zone1; this is a deviation from our

analysis, which may be explained because the BCH mining

is momentarily more profitable than the BTC mining at the

time. Here, we can see again the noise in the case where the

value of DB

DA
is close to k. However, rB decreases again in

agreement with our model. In addition, one can see that rF
decreases in the meantime because the starting height of the

peak in Figure 7a-(8), which is marked by a red point, is less

than that of the final peak in Figure 7a-(6). Therefore, the point

in Zone1 moved in the direction (−,−) and entered Zone3,

conforming with our analysis.

Then, in the second week of Nov. 2017, the price of BCH

was suddenly pumped (k ≈ 0.4 in some cases). Therefore,

Zone2 widens in Figure 8h. Also, the point in Zone3 contin-

uously moves in the direction (+,−), and rF even increases to

over 0.5. It can be seen that the peak in Figure 7-(8) has a right-

angle trapezoid with a positive slope, which indicates that rF
continuously increases even though it was already high. From

the history, we observe that the Bitcoin system often reaches

the lack of BCH loyal miners. However, a breakthrough exists

even in this bad situation. If k continuously increases, Zone2
widens, and it makes the state enter Zone2 and reach close

to the coexistence equilibrium. As a result, considering the

state of Bitcoin as of Nov. 13, 2017, k had to increase to a

minimum of 0.5 in order for the mining power engaging in

fickle mining to decrease.

Close to coexistence. However, at the end of Figure 7-(8),

another hard fork occurred in BCH for updating the difficulty

adjustment algorithm, and this influenced the status as an

external factor. Consequently, the point jumped into Zone2
due to this hard fork as shown in Figure 8h. After the hard

fork, the point moves in the direction (−,+), reaching close to

coexistence. This is shown by this fact that fluctuations became
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stable more and more in the beginning of Figure 7a-(9). Note

that peaks occur in a short time after the hard fork because

the BCH mining difficulty is quickly adjusted. Even though

the state has been close to coexistence, fickle mining is still

possible and observed as described in Section II. In addition,

as the price continuously changes, the point sometimes enters

Zone3 where fickle mining increases, alternating up and down

in the red semicircle in Figure 8i. In other words, fickle

mining will not completely cease. Therefore, if the Bitcoin

state largely deviates from the equilibrium of coexistence due

to external factors such as a sudden change in prices, then it

is still possible to reach the lack of BCH loyal miners.

Influence of the lack of BCH loyal miners. We observe that

the Bitcoin system suffered from the lack of BCH loyal miners

before Nov. 13, 2017. Consequently, the BCH transaction

process speed periodically became low, and it even took about

four hours to generate one block in some cases. Moreover,

we can see that BCH was significantly centralized during

the period in which the BCH mining difficulty is high. For

example, when considering blocks generated from Oct. 2 to

Oct. 4, only two accounts generated about 70 % of blocks and

there were only five miners who conducted BCH mining. We

note that, in blockchain systems using a PoW mechanism,

high mining power is an essential factor for high security

blockchain systems. In practice, BCH before Nov. 13, 2017

was susceptible to double spending attacks with only 1∼2%

of the total computational power in the Bitcoin system. There

is also selfish mining [15], which makes the attacker unfairly

earn the extra reward while others suffer a loss. Because of a

decrease in rB, these attacks can be executed with relatively

small mining power. As a result, fickle mining, which heavily

occurred before Nov. 13, 2017, weakened the performance,

decentralization level, and security of the BCH system.

Influence of the hard fork of BCH. Next, we discuss why

Bitcoin moved toward different equilibria before and after

Nov. 13, 2017. First, in the Bitcoin system before Nov. 13,

2017, rF considerably increased as can be seen in Figure 7a-

(2). Meanwhile, after Nov. 13, 2017, rF did not considerably

increase even though the point passed Zone3. This can be

attributed to the different difficulty adjustment algorithms

before and after Nov. 13, 2017; the mining difficulty of BCH

is currently adjusted faster than that before Nov. 13, 2017.

Therefore, currently, to conduct fickle mining, miners must

switch between BTC and BCH relatively fast; this would make

the current fickle mining in the Bitcoin system annoying. Then,

can we regard the current state of BCH to be safe if the system

avoids external factors such as a sudden change in prices? We

delay the answer until Section VIII.

B. The ”hash war” between Bitcoin ABC and Bitcoin SV

According to our model, we also describe the “hash war”

that recently occurred between Bitcoin ABC (ABC) and

Bitcoin SV (BSV), which are derived from the original BCH

on Nov. 15, 2018. In this paper, we call ‘Bitcoin ABC’ ABC

rather than BCH to avoid confusion with the original BCH

even though Bitcoin ABC is currently regarded as BCH [34].

This war was caused by the conflict over a BCH update

that adds a new opcode, where the BCH factions split into

a reformist group and an opposing group. As a result, this

conflict caused the two factions to make their own chain,

where the reformist group is the ABC faction led by Roger

Ver (the owner of Bitcoin.com [35]) and Jihan Wu (the

cofounder of Bitmain and also the owner of BTC.com [9] and

Antpool [36]) and the opposing group is the BSV faction led

by Craig Wright and Calvin Ayre (the CEO of Coingeek [37]).

This split of the original BCH was achieved by a hard fork on

Nov. 15, 2018, and each faction wanted its own chain to be

the longest chain in order to unify the divided BCH. This fact

makes both factions desperately conduct mining of their coins

with vast computational power; thus the hash war occurred

from Nov. 15, 2018 to Nov. 24, 2018. Such behavior of ABC

and BSV factions would influence on a general miner who

choose its coin among BTC, ABC, and BSV, and we analyze

this situation by dividing into two games: 1) a game between

BTC and ABC and 2) another game between BTC and BSV.

In both games, cstick became significantly high during the

hash war period, and we can consider this situation as Case 4

(cstick >
k

k+1 ).

Figure 9. The data for ABC from Nov. 1, 2018 to Dec. 20 2018 is represented.
The mining power of ABC is expressed as a relative value to the total power
in BTC and ABC, and k indicates a relative price of ABC to that for BTC.

Figure 10. The data for BSV from Nov. 15, 2018 to Dec. 20 2018 is
represented. In this figure, mining power of BSV is expressed as a relative
value to the total power in BTC and BSV, and k indicates a relative price of
BSV to that for BTC.

To analyze a phenomenon that appeared due to the hash

war, we collect the data for ABC and BSV. Figure 9 and 10
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Figure 11. The x and y-axes represent time from Nov. 1, 2018 to Dec. 20,
2018 and the number of ABC blocks generated by each miner in previous
100 blocks, respectively. The name of a miner corresponding to each color is
presented at the bottom of this figure.

Figure 12. The x and y-axes represent time from Nov. 15, 2018 to Dec. 20,
2018 and the number of BSV blocks generated by each miner in previous
100 blocks, respectively. The name of a miner corresponding to each color is
presented at the bottom of this figure.

show the ABC data history from Nov. 1, 2018 to Dec. 20,

2018 and the BSV data history from Nov. 15, 2018 to Dec.

20, 2018, respectively. Note that BSV was released on Nov.

15, 2018. In Figure 9, the mining power of ABC is presented

as a relative value to the total mining power of ABC and BTC,

and k
k+1 is also presented, where k indicates a relative price

of ABC to that for BTC. Figure 10 depicts the data history of

BSV like Figure 9. These figures show that the state (rF , rB)
in the two games was above the state (0, k

1+k
) during the hash

war period.

Moreover, to determine the movement of the state for

the hash war period, we investigate the history of ABC

computational power distribution among miners from Nov.

1, 2018 to Dec. 20, 2018 and that for BSV from Nov. 15,

2018 to Dec. 20, 2018. This is because it would be hard

to determine the movement of the state through just the

mining power history (i.e., Figure 9 and 10) because cstick
significantly changed during this period. Figure 11 and 12

Figure 13. This figure describes the movement of state for hash war period
and the movement of state before and after war.

represent the changes in the mining power distribution of

ABC and BSV over time, respectively. To do this, we crawled

coinbase transactions and analyzed the number of blocks

mined by each miner among previous 100 blocks. In these

figures, each miner corresponds to one color, and the length

of one colored bar represents the number of blocks generated

by the corresponding miner among 100 blocks. Therefore, the

number of colors in the entire bar indicates the number of

active miners at the corresponding time. Note that only names

of ten miners are presented in Figure 11.

First, we consider the game between BTC and ABC. One

can see that the state (rF , rB) jumps to a point above ( k
k+1 , 0)

for the hash war preparation period (from Nov. 13, 2018

to Nov.15, 2018) through Figure 9. Such an increase in the

ABC mining power may be explained because the mining

power of BSV factions such as CoinGeek, svpool, BMG pool,

and Mempool increased from the hash war preparation [38]

as shown in Figure 11. In other words, the increase in the

ABC mining power for the hash war preparation is because

cstick increased. On the other hand, Figure 11 shows that

some miners left the ABC system during the war preparation

(the colors that appeared at the top of the figure before the

war preparation period disappeared from the war preparation

period). This fact indicates that the state moves toward the

line rB = cstick in the case that cstick is large. Note that the

reason why the ABC mining power decreases at the end of the

hash war preparation period (i.e., the start of the hash war) is

that BSV factions move to the BSV system.

Next, for the hash war period, the ABC mining power

increased because the ABC factions such as Bitcoin.com

increased their mining power (i.e., cstick increased) [34].

However, there were only a few loyal ABC miners during this

period. For example, at the start of the hash war, only five

miners exist: Bitcoin.com, BTC.com, AntPool, ViaBTC, and

BTC.TOP. Note that all of them are the ABC factions (ViaBTC

and BTC.TOP announced that they support ABC [39], [40]).

As a result, we can see that this state is close to the state

rB = cstick, which represents a lack of BCH loyal miners.

This state makes the ABC system severely centralized. In

particular, one miner (Bitcoin.com) possessed about 60 % of

the total computational power in some cases, which indicates
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the breakage of censorship resistance. Meanwhile, after the

hash war (i.e., when cstick is less than k
k+1 ), one can see

that more other miners gradually enter the ABC system (see

the increase in the number of colors after the hash war in

Figure 11). In addition, Figure 9 shows that the state is close

to k
k+1 after the hash war. As a result, the state moves as

shown in Figure 13.

Second, we describe the game between BTC and BSV

through Figure 10 and 12. As shown in Figure 10, the state

is above (0, k
k+1 ) for the hash war period because cstick is

significantly high. This fact is also presented in Figure 12.

Note that CoinGeek, svpool, BMG, and Mempool are BSV

factions. Therefore, the state was close to rB = cstick at the

time. Similar to ABC, BSV also suffered from the severe

centralization due to a lack of loyal miners. However, the

other miners have entered the BSV system after the hash war,

and the state became close to (0, k
k+1 ). Therefore, Figure 13

represents the state movement, and this result empirically

confirms our theoretical analysis.

Here, note that when the state is located above k
k+1 , Ωstick

suffers a loss. This fact makes the state cstick > k
k+1 would

not last for a long time. Therefore, the hash war was also not

able to continue for a long time, and the hash war ended with

BSV’s surrender [41].

VIII. BROADER IMPLICATIONS

In this section, we describe broader implications of our

game model. More precisely, we first describe the risk of

automatic mining, and then explain how one coin can exploit

this risk to intentionally steal the loyal miners from other less

valued coins with negligible efforts and resources.

A. A potential risk of automatic mining

As described above, the current state of Bitcoin is close

to coexistence between BTC and BCH because faster BCH

mining difficulty adjustment makes manual fickle mining

inconvenient. We introduce another possible mining scheme

called automatic mining, which can be less affected by faster

mining difficulty adjustment. Automatic mining is designed for

miners to automatically switch the coin to mine to the likely

most profitable one of the compatible coins by analyzing their

mining difficulty and coin prices in real time unlike fickle min-

ing. Here, note that all automatic miners almost simultaneously

change their coin when not only mining difficulty but also coin

prices changes. Indeed, automatic mining can be considered

to be automatically choosing the most profitable one among

three strategies, F , A, and B in real time. Automatic mining

has been executed in the Bitcoin system [42] and has already

become popular in the altcoin system [43]. Indeed, mining

power increases and decreases by more than a factor of four

in most altcoins several times a day [44]. We describe a simple

implementation of automatic mining below.

Currently, many mining pools, including BTC.com,

Antpool, and ViaBTC, support interactive user interfaces for

switching the coin to mine by just clicking one button.

Figure 14 represents the one-button switching mining feature

Figure 14. One-button switching mining in Antpool

provided by Antpool. This feature makes automatic mining

easier without technical difficulties in implementing this ap-

proach. For example, a miner can conduct automatic mining

in Antpool as follows.

1) First, the miner saves an HTTP header with its cookies

to maintain the login session.

2) To determine which coin is more profitable, the miner

calculates the mining profitability of BTC and BCH. In

real-world settings, this can be simply implemented by

using real-time coin prices [45], [46] and the coin mining

difficulty.

3) If BTC mining is more profitable than BCH mining, the

miner sends an HTTP request, which includes the saved

HTTP header and data for switching to BTC mining.

Otherwise, the miner sends an HTTP request to conduct

BCH mining.

4) The above steps are repeated.

As shown in the code [47], this automatic mining can be

executed within about 50 lines in Python.

Large-scale automatic mining makes the state of the coin

system enter Zone3. As a simple example, we can consider

an extreme case wherein the entire computational power is

involved in automatic mining. In this case, any initial state

except for (0, k
k+1 ) immediately reaches the equilibrium rB =

cstick as soon as all miners start automatic mining. This is

because all automatic miners should simultaneously choose

the same coin and would eventually mine coinA when the

mining difficulty of coinB increases.

Then, we have the following question: What ratio of auto-

matic mining power is needed to reach the lack of coinB-loyal

miners? As shown in Figure 4, the state (rF , rB) cannot be

in Zone2 when rF is not less than k. Therefore, (rF , rB)
where rF ≥ k would move in the decreasing direction of rB.

Further, even manual miners who do not conduct automatic

mining would prefer coinA rather than coinB at states in Zone3
where rF ≥ k because coinA-only mining is more profitable

than coinB-only mining at the states; loyal miners of coinB

should generate blocks with high difficulty. Therefore, when

a fraction k of the total mining power is involved in the

automatic fickle mining, the state moves towards a lack of

coinB-loyal miners. As of Dec. 2018, because k in the Bitcoin

system is about 0.05, if 5% of the total mining power in the

Bitcoin system is involved in automatic mining, the automatic
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miners would conduct (automatic) fickle mining and the state

would enters Zone3. Note that if automatic miners of which

the total mining power is 5% conduct coinA-only (or coinB-

only) mining, the state would enter Zone2 (or Zone1). This

is contradiction because the automatic miners should choose

the most profitable strategy. As a result, when only 5% of the

total mining power is involved in the automatic mining, the

number of BCH loyal miners decreases and the BCH system

is finally becoming more centralized.

B. Injuring rivalry coins

In Section VI, we explained how our game G(c, cstick) can

be applied to the Bitcoin system regardless of the BCH mining

difficulty adjustment algorithm. To generalize our game model,

we here consider two types of possible mining difficulty

adjustment algorithms: The first type of algorithm is to adjust

the mining difficulty in a long time period (e.g., two weeks)

while the second type of algorithm is to adjust the mining

difficulty every block or in a short time period in order to

promptly respond to the changes in the mining power. In the

real-world, both types of these mining difficulty adjustment

algorithms are mostly used. For example, BTC and Litecoin

are the cryptocurrency systems using the first type, while

many altcoins including BCH, Ethereum (ETH), and Ethereum

Classic (ETC) are currently using the second type.

We can generalize our game model to any coin system

satisfying the following conditions.

1) Two existing coins share the same mining hardware.

2) The more valued coin coinA between those coins has the

first type of mining difficulty adjustment algorithm.

We note that there is no restriction on the mining difficulty

adjustment algorithm for the less valued coinB in our game

model G∞. When coinB has the first type of mining difficulty

adjustment algorithm, our model can be applied according to

Section IV. Note that we modeled our game in Section IV,

assuming that coinB has the first type of mining difficulty

adjustment algorithm. In addition, in Section VI, we described

why our game can be applied to when coinB has the second

type of mining difficulty adjustment algorithm. Therefore,

regardless of coinB mining difficulty adjustment algorithm,

in the coin system satisfying the above two conditions, the

coinB-loyal miners would leave if at least k fraction of the

total mining power is involved in automatic mining.

Next, we explain how the more valued coin can steal

loyal miners from the other less valued rivalry coin. If coinA

utilizes the first type of mining difficulty adjustment algorithm,

the number of coinB-loyal miners would naturally decrease

due to the automatic mining. Again note that this situation

periodically weakens the health of the coinB system in terms

of security and decentralization. On one hand, if coinA has

a mining difficulty adjustment algorithm different from the

first type (i.e., different from that in Assumption 3), our game

model may not be applied. For example, when considering

the Ethereum system consisting of ETH and ETC, ETH

corresponding to coinA has a different difficulty adjustment

algorithm from that which we assumed in our game. In this

case, even if rB = 0, the complete downfall of coinB (e.g.,

ETC) may not occur and the mining power of coinA and coinB

would fluctuate heavily. Therefore, to follow our game and

so steal the loyal miners from coinB, coinA should change its

mining difficulty adjustment algorithm through a hard fork. We

can see that some cryptocurrency systems (e.g., BCH, ETH,

and ETC) have often performed hard forks to change their

mining difficulty adjustment algorithms [48], [49], [50]. This

indicates that cryptocurrency systems can practically update

their mining difficulty adjustment algorithms if needed.

In conclusion, if the mining difficulty adjustment algorithm

for coinA is changed to the first type of mining difficulty

adjustment algorithms, a lack of loyal miners for coinB might

be reached due to automatic mining.

IX. DISCUSSION

In this section, we first discuss how coinB can maintain

its loyal miners and consider environmental factors that may

affect our game analysis results.

A. Maintenance of coinB-loyal miners

As described in Section VIII-B, coinB cannot prevent the

rivalry coin from stealing loyal miners by changing its diffi-

culty adjustment algorithm alone. Surely, the most straight-

forward way to avoid the risk is to not use the mining

hardware compatible with coinA. That is, a proprietary mining

algorithm, requiring customized mining hardware which is

not compatible with coinA, should be introduced for coinB.

However, this solution is not applicable in practice for small

and medium-sized mining operators because it is expensive to

develop customized mining hardware (e.g., ASICs). In fact,

because many altcoins use a mining algorithm that can be

implemented in CPU or GPU, automatic mining endangers

their mining power, weakening their security.

The second way is to use auxiliary proof-of-work (or

merged mining), which makes a miner conduct mining more

than two coins at the same time [51]. Therefore, our first

assumption in Section IV is not satisfied by merged mining,

and our game results would not be applied. This is also

regarded as a potential solution to 51% attacks because it

significantly increases mining power of altcoins [52]. However,

despite of such definite advantages, most projects do not adopt

merged mining because of following reasons: It is complex to

implement merged mining, and miners should do additional

work [52].

The another way is to increase the price of coinB through

price manipulation. However, as far as we know, the problem

of maintaining the increased coin price through price manip-

ulation is not well-studied. Moreover, we can consider a way

to increase the relative incentive of coinB mining to coinA

mining, where it can be achieved by increasing the block

reward or decreasing the average time of block generation.

Even though this method may help prevent the rivalry coin

from stealing loyal miners, it would cause other side effects

such as inflation or the increase in fork rate [25], [18].
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Lastly, coinB can change its consensus protocol, the PoW

mechanism, to another protocol. However, this process would

not be supported by existing miners in coinB. For example,

Ethereum is planning to switch from a proof-of-work mech-

anism to a proof-of-stake mechanism for several years. How-

ever, note that if the consensus protocol is just changed through

a hard fork, the existing miners may leave because they can

lose their own merits (e.g., powerful hardware capability) for

mining coinB.

B. Environmental factors

In practice, miners’ behavior can deviate from our model

because of the following environmental factors.

Not all miners are rational. First, miners are not always

rational or wise. Even if fickle mining or coinA mining is more

profitable than coinB mining, some miners may be reluctant

to engage in fickle mining or coinA mining because they may

not recognize the profitability in doing so. However, our data

analysis confirms that most miners are rational. In addition, if

miners use the automatic mining function, they would always

follow the most profitable strategy.

Some miners consider the long-term price of coins. Because

price prediction is significantly difficult [53], we believe that

most miners behave depending on the short-term price of

a coin rather than the long-term price. For example, who

could have predicted the hash war between ABC and BSV

in advance? Therefore, as can be seen from the history of

the Bitcoin system, most miners behave depending on short-

term profits. To model more realistic and general situations,

our model considered both rational miners who are interested

in short-term profits and coinB factions (Ωstick) which are

interested in long-term profits.

Some miners prefer the stable coexistence of coins. Some

miners may want the stable coexistence of coins for coin

market stability, and they may try to reach the equilibrium

representing the coexistence of coins regardless of their profits.

If the fraction of such miners is large, a state would move

to the equilibrium (0, k
k+1 ) regardless of its zones. Based on

historical observations of the Bitcoin system, however, the

fraction of these miners seems unlikely to be high in the real-

world.

Other selfish mining. In this study, we considered only fickle

mining, which is a type of rational mining. However, miners

engaging in various form of selfish mining [15], [22], [23],

[24] might cause a deviation from our analysis.

X. CONCLUSION

In this study, we modeled and analyzed the game between

two coins for fickle mining, and our results imply that fickle

mining can lead to a lack of loyal miners in the less valued coin

system. We confirm that this lack of loyal miners can weaken

the overall health of coin systems by analyzing real-world

history. In addition, our analysis is extended to the analysis

of automatic mining, which shows a potentially severe risk

of automatic mining. As of Dec. 2018, BCH’s loyal miners

would leave if more than about 5% of the total mining power

in BTC and BCH is involved in automatic mining. Moreover,

we explained how one coin can steal the loyal miners from

other less valued rivalry coins in the highly competitive coin

market by generalizing our game model. We believe that this

is one of the serious threats for a cryptocurrency system using

a PoW mechanism.
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APPENDIX A

PROOF OF LEMMA V.1 AND THEOREM V.2

In order for player i to not change its strategy at (rF , rB),
the below inequalities should be satisfied.

{

UF (rF , rB) ≥ UA(rF − ci, rB),

UF (rF , rB) ≥ UB(rF − ci, rB + ci)
(6)

{

UA(rF , rB) ≥ UF (rF + ci, rB),

UA(rF , rB) ≥ UB(x, rB + ci)
(7)

{

UB(rF , rB) ≥ UF (rF + ci, rB − ci),

UB(rF , rB) ≥ UA(x, rB − ci)
(8)

(6) represents that a fickle miner’s payoff decreases when the

fickle miner moves to MA (i.e., UF (rF , rB) ≥ UA(rF −
ci, rB)) or when it moves to MB (i.e., UF (rF , rB) ≥ UB(rF−
ci, rB + ci)). Similarly, (7) and (8) represent that players in

MA and MB cannot increase their payoff by changing their

strategy, respectively.

To prove Lemma V.1, we first consider the case that cstick =
0, and have the following steps.

1) First, we find all states characterized as (rF , 0) in which

player i does not change its strategy.

2) Second, we show that there is no state characterized as

(0, rB) in which player i does not change its strategy.

3) Finally, there exists ε > 0 such that, for any player i with

ci < ε, a player i can change its strategy at state (rF , rB)
where rB is positive.

First step: We find all states characterized as (rF , 0) in which

player i does not change its strategy, where we denote such

a state by S. In order for (0, 0) to be S, it is sufficient that

(7) is satisfied. Meanwhile, when rF is greater than 0 and less

than 1, in order for (rF , 0) to be S, not only (7) but also (6)

should be satisfied. If rF is 1, only (6) should be satisfied.

First, we consider the condition for (0, 0) to be S. The

payoff UA(0, 0) of players in MA is 1, and the payoff
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UF (ci, 0) of a player who changes its strategy from A to F is

also 1. Because UA(0, 0) ≥ UF (ci, 0), it is sufficient to show

UA(0, 0) ≥ UB(0, ci) in order for (0, 0) to be S. The payoff

UB(0, ci) is k
ci

, and thus, the state (0, 0) cannot be a S for ci
less than k.

Next, we consider (rF , 0) where rF is greater than 0. In

(6), UF (x, 0) and UA(rF − ci, 0) are 1. Moreover, in (6),

UB(rF − ci, ci) ≤ UF (x, 0) can be arranged as follows.

kNinci + kNderF

Ninc
2
i +Nder

2
F

≤ 1 (9)

⇔ 0 ≤ Nder
2
F − kNderF − Nin

n
(k − ci)

⇔ rF ≤ k

2
−

√

N2
dek

2 + 4NdeNin(kci − c2i )

2Nde

or (10)

k

2
+

√

N2
dek

2 + 4NdeNin(cik − c2i )

2Nde

≤ rF (11)

If ci is less than k, (10) cannot be satisfied because the right-

hand side is negative. Also, if

ci ≤
kNin −

√

k2N2
in − 4NdeNin(1− k)

2Nin

≤ or

k2N2
in − 4NdeNin(1− k) ≤ 0,

the left-hand side of (11) is less than or equal to 1, and (1, 0)
is S.

By (7), UB(rF , ci) should be less than or equal to 1 in order

that (rF , 0) where rF is greater than 0 and less than 1 is S.

Referring to (11), the following is satisfied:

k
2 +

√
N2

dek
2+4NdeNin(cik−c2

i
)

2Nde
≤ rF + ci ⇒ UB(rF , ci) ≤ 1.

Therefore, when

rF ≤ k

2
+

√

N2
dek

2 + 4NdeNin(cik − c2i )

2Nde

,

both (6) and (7) are satisfied. As a result, when

ci ≤
kNin −

√

k2N2
in − 4NdeNin(1− k)

2Nin

,

the all points (k2 +

√
N2

dek
2+4NdeNin(cik−c2

i
)

2Nde
≤ rF ≤ 1, 0) are

S.

Second step: As the second step, we show that game

G(c, cstick) does not have state (0, rB) where rB is positive

and player i does not change its strategy. In order for (0, rB)
where rB is greater than 0 and less than 1 to be S, both (7)

and (8) should be satisfied for player i. First, we consider

the inequality UF (ci, rB) ≤ UA(0, rB). This inequality is

expressed as follows:

UF (ci, rB) ≤ UA(0, rB)

⇔ Nde(ci + rB)
2

(1− ci − rB)Ninr
2
B + (1− rB)Nde(rB + ci)2

+

kNinrB

Ninr
2
B +Nde(rB + ci)2

≤ 1

1− rB

⇔ k(1− rB)
(

(1− ci − y)Ninr
2
B + (1− rB)Nde(rB + ci)

2
)

≤ rB (1− ci − rB)
(

Ninr
2
B +Nde(rB + ci)

2
)

⇔ kNdeci(1− rB)(rB + ci)
2 ≤ ((1 + k)rB − k)×

(1− ci − rB)
(

Ninr
2
B +Nde(rB + ci)

2
)

(12)

The another inequality UF (ci, rB − ci) ≤ UB(0, rB) can be

expressed as follows:

UF (ci, rB − ci) ≤ UB(0, rB)

⇔ Nder
2
B

(1− rB)Nin(rB − ci)2 + (1− rB + ci)Nder
2
B

+

kNin(rB − ci)

Nin(rB − ci)2 +Nder
2
B

≤ k

rB

⇔
(

Nin(rB − ci)
2 +Nder

2
B

)

(13)

×
(

Nder
3
B − k(1− rB)(Nder

2
B −Ninci(rB − ci))

)

≤ k
(

Nder
2
B −Ninci(rB − ci)

)

Nder
2
Bci

(13) is greater than or equal to Nder
2
B. Therefore, the following

inequality

Nder
3
B − k(1− rB)(Nder

2
B −Ninci(rB − ci)) ≤

kci
(

Nder
2
B −Ninci(rB − ci)

)

⇔ Nder
3
B − k(1 + ci − rB)(Nder

2
B −Ninci(rB − ci)) ≤ 0

(14)

should be satisfied. We denote the left-hand side of (14) by a

function f(ci) of ci. Moreover, if (15) is satisfied, (12) cannot

be certainly satisfied as follows:

((1 + k)rB − k)Nin < Nde(k(1 + ci)− (1 + k)rB) (15)

⇒((1 + k)rB − k)Ninr
2

B < Nde(k(1 + ci)− (1 + k)rB)(rB + ci)
2

⇔((1 + k)rB − k)(Ninr
2

B +Nde(rB + ci)
2) < kNdeci(rB + ci)

2

⇒((1 + k)rB − k) (1− ci − rB)
(

Ninr
2

B +Nde(rB + ci)
2
)

< kNdeci(1− rB)(rB + ci)
2

Thus, if (15) is satisfied for all rB that satisfies (14), there

would not exist S = (0, rB) where rB is greater than 0 and

less than 1 because any state (0, rB) does not satisfy both (7)

and (8).

We find a condition of ci such that there is no S = (0, rB)
where rB is greater than 0 and less than 1. In other words,

we find a range of ci such that (15) is satisfied for all rB that

satisfies (14). Eq. (15) is equivalent to the following inequality

rB <
k

1 + k

(

1 +
Ndeci

Nde +Nin

)

.

When rB is k
1+k

(

1 + Ndeci
Nde+Nin

)

, f(ci) is a quadratic equation

of ci, which has a negative coefficient of c2i . Therefore, we

can easily find a number l such that, for all ci < l, f(ci) is

positive when rB is k
1+k

(

1 + Ndeci
Nde+Nin

)

. Then, we find the

derivative
∂f(ci)
∂rB

, and it is expressed as

3Nde(1+k)r2B−2k (Nde(1 + ci) +Ninci) rB+kNinci+2kNinc
2
i .

(16)
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In order that the derivative is non-negative when rB is not

less than k
1+k

(

1 + Ndeci
Nde+Nin

)

, a solution for rB of (16)

should not exist, or all solutions for rB should be less

than k
1+k

(

1 + Ndeci
Nde+Nin

)

. If solutions exist, they are positive.

Therefore, when the sum of solutions,
2k(Nde(1+ci)+Ninci)

3Nde(1+k) ,

is less than k
1+k

(

1 + Ndeci
Nde+Nin

)

, the solutions are less than

k
1+k

(

1 + Ndeci
Nde+Nin

)

. In other words, when 1
ci

is greater

than 2 + 2Nin

Nde
− 3Nde

Nde+Nin
, the solutions are less than

k
1+k

(

1 + Ndeci
Nde+Nin

)

. As a result, if 1
ci

> max{ 1
l
, 2 + 2Nin

Nde
−

3t
Nde+Nin

}, f(ci) is positive for rF ≥ k
1+k

(

1 + Ndeci
Nde+Nin

)

.

This means that, for small ci, (12) cannot be satisfied for all

rB that satisfies (14), and there is no S = (0, rB) where rB is

greater than 0 and less than 1.

For a state (0, 1), (8) should be satisfied to be S. However,

the state (0, 1) does not satisfy (8) except for when 1
k
≥ ci.

Note that k is not greater than 1. Therefore, (0, 1) cannot be

S.

Third step: To do the third step, we consider the game

when a player possesses sufficiently small power. When rB
is positive, inequality limci→0 UF (rF + ci, rB) ≤ UA(rF , rB)
is as follows.

lim
ci→0

UF (rF + ci, rB) ≤ UA(rF , rB)

⇔ UF (rF , rB) ≤ UA(rF , rB)

⇔ k

Ninr
2
B +Nde(rF + rB)2

(17)

≤ rB

(1− rF − rB)Ninr
2
B + (1− rB)Nde(rF + rB)2

(18)

⇔ k((1− rF − rB)Ninr
2
B + (1− rB)Nde(rF + rB)

2)

≤ rB(Ninr
2
B +Nde(rF + rB)

2) (19)

Also, inequality limci→0 UF (rF + ci, rB − ci) ≤ UB(rF , rB)
is as follows.

lim
ci→0

UF (rF + ci, rB − ci) ≤ UB(rF , rB)

⇔ UF (rF , rB) ≤ UB(rF , rB)

⇔ (rF + rB)(Ninr
2
B +Nde(rF + rB)

2)

≤ k((1− rF − rB)Ninr
2
B + (1− rB)Nde(rF + rB)

2) (20)

The solution which satisfies both (19) and (20) is only

(0, k
1+k

). When rB is greater than k
1+k

, only (19) is satisfied

for (0, rB). Meanwhile, if rB is less than k
1+k

, only (20) is

satisfied for (0, rB). Therefore, the range of (rF , rB), which

satisfies (19), is always above that for (20) except for (0, k
k+1 )

and rB = 0 (see Figure 4). It means that there exists a value

ε such that, for all ci < ε and given a positive real number δ,

the line where UF (rF+ci, rB) = UA(rF , rB) is always above

the line where UF (rF + ci, rB − ci) = UB(rF , rB) when rF ,

rB, and 1−rF−rB are in [δ, 1], [ci, 1], and [0, 1], respectively.

For ease of reading, we denote by boundaryA the line where

UF (rF +ci, rB) = UA(rF , rB) when rF , rB, and 1−rF −rB
are in [0, 1], [ci, 1], and [0, 1], respectively. Also, we denote by

boundaryB the line where UF (rF+ci, rB−ci) = UB(rF , rB)
when rF , rB, and 1− rF − rB are in [0, 1], [ci, 1], and [0, 1],
respectively.

Moreover, the derivative ∂rB
∂rF

|rF=0 on boundaryA is greater

than that the derivative ∂rB
∂rF

|rF=0 on boundaryB. Because ∂rB
∂rF

is a continuous function, there exists a positive real number

δ′ such that, for all x ∈ [0, δ′], the derivative ∂rB
∂rF

|rF=x

on boundaryA is greater than the derivative ∂rB
∂rF

|rF=x on

boundaryB. Then, there exists a number ε′ such that, for all

ci < ε′ and x ∈ [0, δ′], the derivative ∂rB
∂rF

|rF=x on boundaryA

is greater than that the derivative ∂rB
∂rF

|rF=x on boundaryB.

Also, as described above, there exists a number ε such that,

for all ci < ε, boundaryA is above boundaryB when rF , rB,

and 1− rF − rB are in [δ′, 1], [ci, 1], and [0, 1], respectively.

In the second step, we showed that (0, rB) cannot be S

where player i does not change its strategy, when 1
ci

>

max{ 1
l
, 2 + 2Nin

Nde
− 3t

Nde+Nin
}. Therefore,

∀ 1

ci
> max{1

l
, 2+

2Nin

Nde

− 3t

Nde +Nin

,
1

ε′
} and ∀rF ∈ [0, δ′],

a range for (7) is always above that for (8) without any

intersection. As a result, there exist ε′′ as

ε′′ = max{1
l
, 2 +

2Nin

Nde

− 3t

Nde +Nin

,
1

ε
,
1

ε′
}

such that, for all ci < ε′′, (rF , rB) where rB is positive is not

S in the game G(c, cstick).
By the above three steps, if cstick = 0, there exists ε′′

such that, for all ci < ε′′, S is characterized as presented in

Lemma V.1. If cstick > 0, from this result, we can easily see

that the value of rB of S is equal to cstick. To characterize S

in this case, it is sufficient to have the second and third steps

described above.

Moreover, by Lemma V.1, the Nash equilibria in game

G(c, cstick) are characterized as presented in Theorem V.2.

This completes the proof.

APPENDIX B

PROOF OF THEOREM V.3

In this section, we show that all Nash equilibria in the game

G(c, cstick) when players possess sufficiently small mining

power. We first consider when cstick is 0. In order for a state

(rF , rB) to be a Nash equilibrium in the game G(c, cstick),
the following equation should be satisfied:

∑

s∈Smax

rs = 1 when Smax = argmax
s∈{F,A,B}

Us(rF , rB)

The above equation means that all players belong to the most

profitable group among MF , MA, and MB. In other words,

in order for a point (rF , rB) to be an equilibrium, either 1)

UF , UA, and UB have the same value at the point, or 2) all

miners should be in the most profitable group at the point.

If both of them are not satisfied, some players would change

their strategy to the most profitable one.
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First, we consider that three payoffs are the same. The case

that payoffs of MF and MA are the same is equal to

rB = 0 or
k

Ninr
2
B +Nde(rF + rB)2

=

rB

(1− rF − rB)Ninr
2
B + (1− rB)Nde(rF + rB)2

.

(21)

The case that payoffs of MF and MB are the same equal to

rF + rB = 0 or
k

Ninr
2
B +Nde(rF + rB)2

=

rF + rB

(1− rF − rB)Ninr
2
B + (1− rB)Nde(rF + rB)2

.

(22)

By finding a solution satisfying both (21) and (22), we can

derive that three payoffs have the same value at the points

(rF = 0, rB = k
k+1 ) and (rF = k, rB = 0). Therefore, these

two points are equilibria.

Second, we consider three cases, when all miners belong

to only two groups: 1) MF and MA have the same mining

profit density when rB is 0, 2) MA and MB have the same

mining profit density when rF is 0, and 3) MF and MB

have the same mining profit density when rF + rB is 1. In

the first case, in order for the case to be equilibria, MF and

MA are profitable than MB. Therefore, when rF is not less

than k, the case can be an equilibrium. In other words, (k ≤
rF ≤ 1, rB = 0) is a Nash equilibrium. In the second case,

given that rF is 0, rB should be k
k+1 in order that MA and

MB have the same payoff. We already showed that the point

(0, k
k+1 ) is an equilibrium. The final case is impossible except

for when k is 1. If k is 1, only point (1, 0) belongs to the final

case. Also, we already showed above that the point (1, 0) is

an equilibrium.

Finally, we consider three cases, when all players belong to

just one group: 1) all players are in MF , 2) MA, and 3) MB.

As we demonstrated above, the first case (rF = 1, rB = 0)
is an equilibrium. The second case represents (rF = 0, rB =
0). In the second case, MA has the mining profit density 1.

However, players in MA would shift to other groups because

payoffs of MF and MB diverge to infinity. Therefore, this

case cannot be an equilibrium. The third case presents (rF =
0, rB = 1). In this case, MB has the payoff k, and payoffs for

other strategies diverge to infinity. Therefore, players in MB

shift to others, and this is not an equilibrium. As a result, all

equilibria in the game G(c, cstick = 0) are (rF = 0, rB =
k

k+1 ) and (k ≤ rF ≤ 1, rB = 0).
In the same manner, we can determine all Nash equilibria

in game G(c, cstick = 0) when cstick > 0. Then the equilibria

are (3).

APPENDIX C

PROOF OF THEOREM VI.1

In this section, we first consider cstick = 0. At the state

(0, k
1+k

), the two payoffs of coinA mining and coinB mining

are the same as 1 + k. Also, the payoff of MF has the same

value of 1 + k, because the mining difficulty of both coinA

and coinB would not change and thus MF does not change

the coin to mine. Therefore, rational miners do not revise

their strategies at (0, k
1+k

), and the state (0, k
1+k

) is a Nash

equilibrium. Indeed, in order for the payoffs of MF , MA,

and MB to be the same, MF should not change the coin to

be mined like in the state (0, k
1+k

). If not, the coinB mining

difficulty would periodically change because of fickle miners.

In this case, we first assume that the payoffs of MA and

MB are the same. Then the coinB mining is more profitable

than the coinA mining when the coinB mining difficulty is

low. Conversely, when the coinB mining difficulty is high,

the coinA mining is more profitable than the coinB mining.

Therefore, MF would earn more profit than that for MA and

MB because they conduct the coinB mining only when its

difficulty is low. This fact implies that, in a state where MF

changes its preferred coin, the payoffs of MF , MA, and MB

cannot be the same. By using this property, one can easily find

that there exist only the states (0, k
1+k

) and (k, 0) where the

three payoffs are the same.

In the states (k < rF ≤ 1, rB = 0), the mining difficulty of

coinA is eventually maintained as 1 while the mining difficulty

of coinB is maintained as more than k. Thus, the payoffs of

MF and MA are 1 at the states. To find the payoff of MB

in the states, we consider states (k < rF ≤ 1, rB = δ)
for sufficiently small δ. Note that UB(rF , 0) is defined as

limδ→0 UB(rF , δ). In (k < rF ≤ 1, rB = δ), the mining

difficulty of coinB would have value d ∈ (k, rF ] most of

the time, because fickle mining that heavily occurs increases

the mining difficulty of coinB by a high value and it takes a

significantly long time for MB with the mining power δ to

find blocks with the high mining difficulty d. Therefore, the

payoff UB(k < rF ≤ 1, 0) of MB as k
d

is less than 1. This

means that rational miners do not change their strategies to B
at the states, and states (k ≤ rF ≤ 1, rB = 0) representing

the downfall of coinB are Nash equilibria. Meanwhile, in states

(rF < k, rB = 0), rational miners would move to MB because

MB’s payoff is greater than 1 while MF and MA’s payoffs

are 1.
In addition, like in Figure 4, boundary1,3 is always above

boundary2,3 except the point (0, k
k+1 ) in the triangle area.

Note that boundary1,3 refers to a line on which the payoffs

of MF and MA are the same while rB > 0, and boundary2,3
refers to a line on which the payoffs of MF and MB are the

same. When rB = 0, the payoffs of MF and MA are always

the same because MF would mine only coinA eventually. If

we assume that boundary1,3 and boundary2,3 have another

intersection point, not (0, k
k+1 ), in the triangle area, the payoffs

of MF , MA, and MB would be the same for at least three

points. This is a contradiction because the three payoffs are

the same at only two points, (0, k
1+k

) and (k, 0). Moreover,

boundary2,3 intersects with the line rB = 0 at the point (k, 0)
because payoffs of MF , MA, and MB are the same at the

point. Meanwhile, boundary1,3 does not intersect with the

line rB = 0. This is because MF is trivially most profitable

at (k ≤ rF ≤ 1, rB = δ) for sufficiently small δ, and the

difference between payoffs of MF and MA (i.e., UF−UA) is
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a decreasing function of rB when rF is given. Indeed, when rF
is given, the greater rB, the smaller rA is and the lower coinA

mining difficulty is. Therefore, when rB increases, the profit,

which fickle miners earn by mining coinA, increases, and this

means that, for given rF , UF −UA is a decreasing function of

rB. Similarly, for given rF , UF −UB is an increasing function

of rB. Because of these facts, boundary2,3 does not intersect

with the line rF + rB = 0 while boundary1,3 intersects at

one point of the line rF + rB = 0. As a result, even when the

mining difficulty of coinB is adjusted in a short time period, the

game G(c, cstick = 0) has Nash equilibria and dynamics such

as in Figure 4. This fact also makes the game G(c, cstick > 0)
have dynamics presented in Figure 4.
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